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Abstract
In this paper, we extend the analysis of stationary states of a nonlinear model of
a gas of pyramidal molecules (already discussed in the literature) by including a
linear coupling to an external electromagnetic field. It is seen that this results in
a shift of the bifurcation point and consequently allows, for appropriate values of
Rabi frequency, stable localized stationary solutions below the critical pressure
required in the absence of molecule–field coupling.

PACS numbers: 33.80.−b, 42.50.−p, 33.90.+h

1. Introduction

In 1927, Hund anticipated the (now well known) problem of optical enantiomers [1], namely
their nonexistence in energy eigenstates that are the superposition of the two enantiomeric (left-
handed and right-handed) forms. These so-called chiral states, for example, of the molecules
of the type XYZW, are mirror images of each other. Hund suggested a double-well potential
model for the nucleus of X to describe its beating motion across the plane formed by the other
three atoms. The left- and right-handed states (|L〉 and |R〉) then can be viewed as the states
localized in the two minima of such a potential. The tunnelling from |L〉 to |R〉 and |R〉 to |L〉
leads to the so-called inversion spectrum from such molecules.

In late 1940s and early 1950s, there were a few spectroscopic investigations regarding such
spectra from pyramidal molecules [2–4]. It was found that the frequency of the inversion line,
which corresponds to the energy difference between the two lowest lying energy eigenstates,
decreases to zero at a critical value of pressure, which is different for different pyramidal
molecules. This ultimately leads to the disappearance of the inversion spectrum from the
molecule and appearance of chiral or localized states of such molecules, which are found to
be stable above the critical pressure.

In the last few years, there have been various theoretical proposals to explain this kind
of transition to the optical enantiomeric states [5–13]. In the proposal of Jona-Lasinio,
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Presilla and Toninelli [9], a nonlinear two-level model of a gas of pyramidal molecules was
successfully employed to explain quantitatively, without free parameters, the shift to zero
frequency of the inversion line. The nonlinearity in this model arises from the intermolecular
dipolar interaction expressed in the mean-field approximation. In [10], they analysed the
model further with respect to the energetic stability of the molecular states.

More recently, Grecchi and Sacchetti [13] considered a dissipative interaction of the
molecule with its environment and showed that the stable chiral states are the result of the
dissipative interaction. In this proposal, the nonlinear differential equations, representing
the time derivatives of the imbalance variable z and the relative phase θ (see below), contained
two parameters: µ the nonlinearity parameter and ζ , the dissipation parameter respectively. µ

was related linearly to the pressure [9] while ζ was not related to any experimentally observable
physical parameter. There exists a value of µ, namely µc = 1, corresponding to the critical
value of pressure, at which the bifurcation takes place giving rise to asymmetric localized stable
stationary solutions apart from the already existing even and odd parity stationary solutions,
for µ > µc.

In the present paper, we apply this analysis to a pyramidal molecule coupled to an external
electromagnetic field through a linear interaction and analyse among other things, the shift in
the bifurcation point due to molecule–field coupling. The paper is organized as follows: in
section 2, the generalized Hamiltonian, which includes the Jaynes–Cummings Hamiltonian
term in the rotating wave approximation representing the molecule–field interaction, is
introduced. In section 3, using the total Hamiltonian we derive the system of generalized
nonlinear differential equations representing the time derivatives of the imbalance variable z

and the relative phase θ [13]. Apart from the effective nonlinearity and dissipation parameters
of the earlier analysis, there appears a new parameter µ0 in our case, representing the ratio of
quantum Rabi frequency and the frequency corresponding to the energy difference between the
two lowest lying energy states of the molecule. Further in the section, we obtain a polynomial
of degree 4 in z and a relation expressing θ in terms of z, as the simultaneous conditions on
(z, θ ) to be a stationary solution. Both these expressions reduce to the results found in
the earlier analysis in the absence of molecule–field coupling. Numerical solution of the
polynomial equation in z shows a shift in the bifurcation point from the value µc = 1 to
a value depending on the Rabi frequency and the detuning and dissipative parameters. We
conclude by giving examples of the required values of Rabi frequency for given values of
α, ζ, µ and for chosen values of z0.

2. The model and the Hamiltonian

The Hamiltonian for a single pyramidal molecule has the form

HM = − h̄2

2m
� + V (1)

where V takes the form of a double-well potential. The stationary solutions of the equation

ih̄
∂

∂t
|ψ(t)〉 = HM|ψ(t)〉 (2)

are the even- and odd-parity eigenstates |1〉 and |2〉 with energy eigenvalues E1 and E2

respectively. The time interval τgiven by τ = 2πh̄
�E

with �E = E2 − E1 is the period and
2ω = �E

h̄
is the frequency of the beating motion between the two wells.
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For a molecule coupled to electromagnetic field and interacting with other molecules in the
surroundings through the dipole–dipole and dissipative interactions [13], the total Hamiltonian
is given by

Htotal = HM ⊗ IF + IM ⊗ HF + HMM ⊗ Hf + HDis ⊗ Hf + HMF. (3)

Here HM is as given by (1); HF = h̄ω0a
†a is the field Hamiltonian with a and a† being mode

operators for the single-mode field; IM and IF are the identity operators acting on the molecular
and field states respectively; HMM = ενG (where, in terms of the total wavefunction, ν is
defined by ν = 〈�|G ⊗ Hf |�〉) represents the molecule–molecule dipolar interaction in the
mean-field approximation; G is a bounded odd function and ε < 0 measures the strength
of the interaction; HDIS = iηνGP is the dissipative-interaction term; η < 0 measures the
strength of the dissipative interaction; HMF = h̄g(a†|1〉〈2| + a|2〉〈1|) is the Jaynes–Cummings
Hamiltonian representing the molecule–field interaction and g is an effective coupling constant;
Hf = a + a†√

n + 1
, an operator operating on the field kets, is introduced in the model to consider

the concomitant creation and destruction of field quanta in the dipolar as well as dissipative
interactions of the molecule with its surroundings.

3. Generalized nonlinear differential equations and their stationary solutions

The total (molecule–field) wavefunction at any time is given by

|�(t)〉 = a1(t)|1〉|n + 1〉 + a2(t)|2〉|n〉 (4)

where |1〉 = 1√
2
[|R〉 + |L〉] and |2〉 = 1√

2
[|R〉 − |L〉] as expressed in terms of the right- and

left-handed states; |n〉 and |n + 1〉 are the usual photon number states. Substitution of (4) in
the time-dependent Schrödinger equation ih̄ ∂

∂t
|�(t)〉 = Htotal|�(t)〉 gives

ih̄ȧ1 = a1(t)[E1 + h̄ω0(n + 1)] + a2(t)[h̄g
√

n + 1 + ενc + iηνc] (5a)

ih̄ȧ2 = a1(t)[h̄g
√

n + 1 + ενc + iηνc] + a2(t)[E2 + h̄ω0n]. (5b)

Using the relations a1(t) = aR(t)+aL(t)√
2

and a2(t) = aR(t)−aL(t)√
2

, one can obtain the following
system of ordinary differential equations,

iȧR = �aR − δ

2
aL + ενcaR − iηνcaL + g

√
n + 1aR + ω0

(
n +

1

2

)
aR (6a)

iȧL = �aL − δ

2
aR − ενcaL − iηνcaR − g

√
n + 1aL + ω0

(
n +

1

2

)
aL (6b)

ν = c[|aR|2 − |aL|2] (6c)

where � = E1+E2
2h̄ , ω = E2−E1

2h̄ , δ = 2ω − ω0 and c = 〈R|G|R〉 = −〈L|G|L〉. Using
equations (6), we find that the time derivatives of the relative phase variable θ = arg(aR) −
arg(aL) and the imbalance variable z = |aR|2−|aL|2 ∈ [−1, +1] take the following generalized
forms,

ż = ωZ(z, θ) (8a)

θ̇ = ω�(z, θ) (8b)

where

Z(z, θ) = 2
√

1 − z2[α sin θ − ζz cos θ]
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and

�(z, θ) = −2
z√

1 − z2
[α cos θ + ζz sin θ ] + 2µz + 2µ0,

with

α =
(

1 − ω0

2ω

)
, µ = −c2ε

ω
, ζ = −c2η

ω
, and µ0 = −g

√
n + 1

ω
.

Here, µ and ζ , as earlier, represent positive dimensionless parameters that measure the
effective nonlinearity and the dissipation, respectively; µ0 is also a dimensionless parameter
representing the ratio of the Rabi frequency of the driving field ‘−2g

√
n + 1’ and the frequency

‘2ω’ corresponding to the energy difference between the two lowest lying energy levels of the
molecule.

The stationary solutions (z0, θ0), for which ż = f1(z, θ) and θ̇ = f2(z, θ) are
simultaneously equal to zero, are given by

(ζ 2 + µ2)z4
0 +

(
µ2

0 + α2 − µ2
)
z2

0 + 2µµ0
(
z3

0 − z0
) = µ2

0 (9a)

θ0 = tan−1

(
ζz0

α

)
. (9b)

From (9a) µ0 is given by

µ0 = z0

[√
α2 + ζ 2z2

0

1 − z2
0

− µ

]
. (10)

(Only the positive square root in the bracket gives the correct limiting situation of µ0 = 0,
z0 �= 0 since µ > 0; so the negative root has been suppressed.)

Equations (9) and (10) are the main result of this paper. At a given pressure, i.e. for a
fixed µ, equation (10) determines µ0 for a specific value of z0, i.e. it tells us the value of Rabi
frequency for a required value of the localization parameter. Let us consider the following
cases:

Case (i). µ = ζ = 0 ⇒ z2
0 = µ2

0

µ2
0+α2 : this is a well-known quantum optical result for the

Jaynes–Cummings model in which the molecule possesses ‘dressed’ states corresponding to
the combinations of its two lowest energy eigenstates coupled to different photon states of the
radiation field, approaching symmetric and antisymmetric superpositions near resonance [14].
These superpositions correspond to the localized states in the case of pyramidal molecules
[15].

Case (ii). µ0 = 0, α = 1 amount to not including the radiation field in the analysis. This gives
z0 = 0 or z2

0 = µ2−1
µ2+ζ 2 . Clearly, this situation corresponds to the Grecchi–Sacchetti proposal

[13].

Case (iii). µ �= 0, ζ �= 0, µ0 �= 0, z0 �= 0 ⇒ 0 < z2
0 <

µ2−α2

µ2+ζ 2 or µ2−α2

µ2+ζ 2 < z2
0 < 1.

For this case, the two inequalities allow nearly localized (|z0| ∼ 1) as well as delocalized
(|z0| 	 1) solutions at different values of pressure. To investigate the stability of these
stationary solutions, we consider the autonomous system of ordinary differential equations
ż ≡ f1(z, θ) and θ̇ ≡ f2(z, θ) [16]. Writing y1 = z, y2 = θ and y0

1 = z0, y0
2 = θ0 the
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constant derivatives at the critical point (z0, θ0) are given by the matrix F with elements
fij ≡ .

∂fi

∂yj

∣∣
(y0

1 ,y0
2 )

:

f11 = −2ωζ

√
1 − z2

0 cos θ0

f12 = 2ω

√
1 − z2

0 (α cos θ0 + ζz0 sin θ0)

f21 = 2ω


µ − ζz0 sin θ0√

1 − z2
0

− α cos θ0 + ζz0 sin θ0(
1 − z2

0

) 3
2




f22 = 0




. (11)

Also, the roots λ of the secular polynomial det(F − λI) = 0 are given by

λ = f11 ±
√

(f11)2 + 4f12f21

2
. (12)

For the allowed stationary solutions, it is possible to evaluate numerically the values of the
matrix elements fij using equations (11) and hence to find the roots λ. Depending on the
nature of these roots, the stability of the stationary solution can be investigated.

For given values of parameters (α, ζ, µ,µ0), equation (9) is a polynomial of degree 4
in z0. Numerical analysis shows the existence of a critical value of nonlinearity parameter
µ = µc, at which bifurcation takes place, i.e. below µc, there are only two (real) solutions,
one stable and the other unstable which bifurcate into four solutions above µc; two stable and
two unstable. Further, as expected, there is a shift in bifurcation point due to the presence
of the linear interaction term involving the electromagnetic radiation. In an analysis without
electromagnetic radiation, µc = 1, whereas in our case µc depends on the value of µ0, for
given values of α and ζ . For instance, for µ0 = 1, µc is approximately 1.7 while for µ0 = 0.1,
µc is approximately 0.45. In fact, as µ0 becomes smaller and smaller, µc → α. Figure 1
shows the shift in bifurcation point from µc = 1 to a value close to α for µ0 = 10−4.

We can numerically look into some particular solutions and find the required values
of Rabi frequency, in the case of, for example, ammonia molecule (2ω = 24 GHz, Pcr =
1.7 atm) for given values of µ, ζ and α, and for a chosen value of z0.

For µ = 0.5 (sub-critical pressure in the absence of molecule–field coupling), ζ = 0.2
and α = 0.2, the inequality µ2−α2

µ2+ζ 2 < z2
0 < 1 allows z0 = ±0.999 as a possible solution,

which requires µ0 ∼ ±6. This implies that a Rabi frequency of about 144 GHz for the
interaction of an ammonia molecule with the radiation field of about 19 GHz frequency
can localize the molecule at sub-critical pressure. In this case, the roots of the secular
polynomial are complex conjugate pairs with negative real part. Hence the corresponding
solutions are stable (spiral sinks). It can easily be checked that still lesser values of
pressures (µ) require higher and higher values of the Rabi frequency (µ0) to achieve
localization as one would expect. The other inequality allows delocalized solutions
which, being unstable (saddle points), are not physically interesting.

The high Rabi frequency requirement for z0 = ±0.999 is not a matter of concern. The
required Rabi frequency depends sensitively on the localization parameter z0 and, of course,
the detuning parameter α. For example, for α = 0.1 and z0 = 0.91, the Rabi frequency is
much lower, about 19 MHz. This corresponds to a power requirement in milliwatt range,
which is within experimental reach.

For µ = 3 (above critical pressure in the absence of molecule–field coupling), ζ = 0.2,
α = 0.2, the inequality 0 < z2

0 <
µ2−α2

µ2+ζ 2 allows the choice z0 = ±0.2, giving µ0 ∼ ∓0.6.
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Figure 1. Graph showing the localization parameter (z0) as a function of the nonlinearity parameter
(µ) with ζ = 0.2. Plot (a) refers to the situation when there is no molecule–field coupling [9, 13]
and the bifurcation point is µc = 1. Plot (b) refers to the situation of the present work where
molecule–field coupling is included, and the bifurcation point µcdepends on the Rabi frequency
(and the detuning and dissipative parameters). Plot (b) shown is for µ0 = 10−4 and α = ζ = 0.2,
where the bifurcation point is seen to be close to α.

These nearly delocalized solutions are, however, again unstable (saddle points) and
therefore, are not physically significant. On the other hand, the other inequality allows
stable nearly localized solutions. This is hardly surprising since stable localized solutions
exist in this case even without the radiation field.

Physically, the phenomena explored in this paper are closely related to the quantum
Zeno (and anti-Zeno) effect discussed extensively in the literature [17–19]. Reference [18],
for example, considered the dynamics of a system subject to an external time-dependent
perturbation and a continuous nonselective measurement of some observable. In the present
case, the external perturbation is the electromagnetic radiation while the nonlinear interaction
of a molecule with the rest of the gas plays the role of an external bath with a non-flat
spectrum. Our work then is a specific manifestation of the results of [18] for the problem of
the localization of pyramidal molecules.

4. Conclusion

In the present investigation, we have considered stationary states of a pyramidal molecule
coupled to an electromagnetic field and interacting with other molecules in the surroundings
through dipolar and dissipative interactions. It was found that the nonlinear differential
equations for the imbalance variable z and the relative phase variable θ give a polynomial of
degree 4 in z representing the condition for (z0, θ0) to be a stationary solution. Numerical
analysis of this equation shows a shift in the bifurcation point in the solution from its
value µc = 1 to a value depending on the Rabi frequency and the detuning and dissipative
parameters. The consequences of this equation are, as expected, consistent with the limiting
cases of no radiation field [9, 13] on the one hand and no molecular environment [14] on the
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other. However, our result gives a detailed connection between the values of Rabi frequency,
molecular pressure, detuning and dissipative parameters, and the extent of localization achieved
for the stationary state. In particular, it gives the value of Rabi frequency needed for localization
of a pyramidal molecule for different values of pressure.
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